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This experimental study is devoted to the description of the different patterns resulting
from instabilities which appear in the flow between a rotating and a stationary disk
enclosed by a stationary sidewall. With the help of visualizations we describe the
different flow regimes as functions of two control parameters: the Reynolds number
and the aspect ratio of the gap separating the disks, which are varied over large
continuous ranges. Moreover, visualizations and ultrasonic anemometry lead to the
description of the different instabilities and to the construction of a transition diagram
that summarizes the domains of existence of the various patterns. Two different
scenarios of transition are mainly followed by the flow. When the gap between the
two disks is more than the thickness of the two disk boundary layers, circular and
spiral waves destabilize the stationary disk boundary layer. Transition occurs in this
case by the mixing of these waves. On the other hand, when the two boundary layers
are merged, finite-size turbulent structures can appear. They consist of turbulent spots
or turbulent spirals which invade the laminar domains as the Reynolds number of
the flow is increased.

1. Introduction
Because of their practical and academic interest, the viscous flows confined between

rotating and stationary parallel disks have motivated numerous experimental, numeri-
cal and theoretical studies during the 20th century. Such flows can model situations
encountered in geophysics and in many industrial applications such as turbomachinery
(see e.g. the review by Owen & Rogers 1989). From a fundamental point of view, the
research has been motivated in large part by the fact that for infinite geometries, exact
similarity solutions of Navier–Stokes equations can be obtained for the stationary
axisymmetric basic flow. They were first calculated by von Kármán in 1921 for the
flow induced by a infinite disk rotating in a quiescent fluid and then generalized
by Batchelor (1951) for the one- and two-disk flow families, the latter including
the case where only one disk rotates. These similarity solutions allow the reduction
of the Navier–Stokes equations to a system of ordinary differential equations. The
solutions of these equations, and their multiplicity, have given rise to a large quantity
of numerical work which has been the subject of a review by Zandbergen & Dijkstra
(1987). Among these solutions, the one usually referred to as the Batchelor solution
is of special interest. Batchelor (1951) conjectured that for large enough Reynolds
number Reh = Ωh2/ν (where Ω is the angular velocity of the rotating disk, h the
axial distance between the two disks and ν the kinematic viscosity of the fluid)
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the viscous effects are confined to boundary layers on each disk, separated by an
inviscid core approximately in solid-body rotation with an angular velocity Ωc = βΩ.
Later, the constant entrainment coefficient β was calculated to be nearly equal to 1/3
(Lance & Rogers 1962). When the Reynolds number Reh is decreased, the Batchelor
stationary flow with separated boundary layers evolves towards a purely viscous flow
with merged boundary layers as obtained in the numerical study of Lance & Rogers
(1962). An asymptotic analysis (see e.g. Schouveiler 1998) shows that the similarity
solution tends towards a torsional Couette flow, with a linear azimuthal velocity
profile, when Reh tends towards zero.

Numerous experimental (e.g. Gauthier, Gondret & Rabaud 1999) and numerical
(such as Dijkstra & van Heijst 1983) studies have shown that, for large enough
Reynolds numbers, this Batchelor solution is at least qualitatively relevant for the
finite configurations of the flows between a rotating and a stationary disk enclosed
by a cylindrical sidewall. But for these finite geometries, the angular velocity of the
core is a function of the radial coordinate, contrary to the Batchelor infinite disk flow,
and therefore the flow deviates from the self-similar solution. However, just as in the
infinite geometry, for decreasing Reynolds numbers Reh the flow evolves towards a
viscous torsional Couette flow (Sirivat 1991).

A considerable amount of research has been devoted to the stability of the one-
disk flow family. In particular, these boundary layer flows of a rotating fluid (at the
angular velocity Ωf) above a rotating disk (at the angular velocity Ω) appear as a
model for the stability study of three-dimensional boundary layers. Linear stability
analyses of the similarity solutions have been performed by Faller (1991), Pikhtov &
Smirnov (1993) and Lingwood (1997) over a wide range of the parameters Ωf and
Ω, including the three limiting cases (Ωf = 0, Ω 6= 0), (Ωf 6= 0, Ω = 0) and (Ωf ≈ Ω)
respectively referred to as the von Kármán, Bödewadt (1940) and Ekman (1905)
layers. These analyses, which have been conducted locally at the radial location r,
have reported a characteristic two-lobe marginal surface. The two lobes are associated
with two instabilities typical of the one-disk flows and are referred to as type 1 and 2
(according to the terminology introduced by Faller & Kaylor 1966a), and sometimes
as class B and A (Greenspan 1968). The global minimum of the marginal surface
corresponds to the type 2 (class A) instability. Both instabilities appear in the form of
regular systems of spiral rolls confined to the disk boundary layer, but these roll-like
patterns differ in orientation, phase velocity and wavelength.

Type 1 instability was first noticed in the von Kármán layer by Smith (1946), then
by Gregory & Walker (see Gregory, Stuart & Walker 1955), and by Faller (1963)
in the Ekman layer. Stuart (in Gregory et al. 1955) showed that type 1 instability
results from an inviscid mechanism due to unstable inflection points in boundary
layer velocity profiles. In spite of numerous experimental studies (e.g. Kobayashi,
Kohama & Takamadate 1980; Wilkinson & Malik 1983), and although the stability
analyses (Kobayashi et al. 1980; Balakumar & Malik 1990) predict that the most
unstable type 1 modes have non-zero frequency relatively to the disk, experimental
investigation of such travelling modes is fairly recent (Jarre, Le Gal & Chauve 1996).

Theoretical studies of Ekman layer stability by Lilly (1966) and Faller & Kaylor
(1966b) have indicated the existence of the second (type 2) instability associated with
the Coriolis terms, which appears to be dominant at low Reynolds numbers and
stable in the non-viscous limit. These waves were first experimentally reported in
the Ekman flow by Faller (1963) and in the von Kármán layer by Faller & Kaylor
(1966a).

Owing to the difficulty of realizing experimentally a fluid flow in solid-body rotation
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above a stationary disk, the stability of the Bödewadt boundary layer has been far
less studied. Savas (1983, 1987) has performed transient spin-down experiments to
approximate such a configuration. He has reported two different instabilities in the
form of circular and spiral rolls which could correspond respectively to the type 2
and 1 instabilities (Pikhtov & Smirnov 1993). These observations have been confirmed
by the experimental and computational investigations of Lopez (1996) and Lopez &
Weidman (1996). From their extensive stability analysis, Pikhtov & Smirnov (1993)
have concluded that the Bödewadt layer is the most unstable configuration of the
one-disk flow family in agreement with the previously cited studies. Lingwood (1995,
1997) has also theoretically shown, and experimentally confirmed for the von Kármán
flow (Lingwood 1996), that these one-disk flows are subject to an absolute instability
whose onset is consistent with the onset of the transition to turbulence. Finally, a
recent work (Fernandez-Feria 2000) presented a spatial linear stability analysis of the
Bödewadt boundary layer. Some of these results will be compared later on to our
own measurements.

The problem addressed in this paper is the stability of the flows confined between
a rotating and a stationary disk. It has been far less studied than the stability of the
one-disk flow family. To our knowledge the first publication exclusively devoted to
this subject is by Wimmer (1978) who experimentally exhibited an instability mode
appearing as a spiral roll system. Earlier, Daily & Nece (1960) had distinguished
experimentally two types of laminar–turbulent transition when the angular velocity
of the rotating disk is increased. Thus, according to the distance separating the
two parallel disks, the transition can affect either the torsional Couette flow or the
Batchelor flow. But these authors did not study the transition in great detail.

As pointed out by Zandbergen & Dijkstra (1987), the existence in a certain range
of parameters of a rotating core (as described by the separated boundary layer
Batchelor flow) provides a connection between the one- and two-disk flow families
by considering Ωf = Ωc and the angular velocity of the disk equal to 0 or Ω. For
this case, the linear stability analysis of the similarity Batchelor solution has been
performed by Itoh (1991) for the separated boundary layer regime and San’kov &
Smirnov (1992) from separated to merged boundary layers. In parallel with these
stability studies, experiments revealed the existence of various sequences of transition
from the laminar basic regime to turbulent flow when one increases the Reynolds
number, according to the value of the aspect ratio h/R.

In particular, in the case of separated boundary layers, it was found that the
stationary disk boundary layer is the first to be destabilized by circular waves which
propagate inwards (Schouveiler et al. 1996). These waves, which appear to be of the
same type (apparently recognized as a type 2 instability by San’kov & Smirnov 1992)
as the circular waves observed by Savas (1987) in his transient experiments, were
also observed in numerical simulations (Lopez & Weidman 1996; Cousin-Rittemard,
Daube & Le Quere 1998; Serre, Crespo Del Arco & Bontoux 2001). They were also
particularly well characterized in the experimental study of Gauthier et al. (1999)
who showed the convective nature of the instability. At higher values of the Reynolds
number, another unstable mode has also been observed (Itoh 1988; Schouveiler et
al. 1996; Serre et al. 2001). This secondary instability creates a spiral pattern which
co-exists with the previous circular waves. The stability of this spiral wave pattern
was then studied and the wavenumber selection process was described as a result of
the Eckhaus instability (Schouveiler, Le Gal & Chauve 1998).

In the case of merged boundary layers, other instabilities were discovered by
San’kov & Smirnov (1985), Itoh (1988) and Sirivat (1991). These instabilities are
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Figure 1. Experimental device. The radial gap jr between rotating disk and sidewall
is less than 0.05 mm.

mainly characterized by localized turbulent structures which can take the form of
spots or of solitary waves (San’kov & Smirnov 1985). The number of these struc-
tures, which are usually superimposed on a short-wavelength spiral pattern, increases
with the Reynolds number. A scenario of transition which may be related to the
spatio-temporal intermittency scenario (Manneville 1991) leads finally to a completely
turbulent flow.

This paper is organized as follows: § 2 is devoted to the description of our experi-
mental setup. A summary of the different flow patterns visualized at large, intermediate
and small aspect ratios is presented in an experimental transition diagram in § 3. Then,
the flow regimes are characterized in §§ 4 and 5 using ultrasonic Doppler anemometry
and flow visualizations. Before concluding (§ 7), the influence of the geometry is briefly
discussed in § 6.

2. Experimental details
2.1. Experimental apparatus

The flow is confined in the gap between two horizontal coaxial parallel disks, one
stationary and the other rotating at an adjustable speed. It is enclosed at the periph-
ery by a stationary cylindrical sidewall. The experimental apparatus, schematically
presented in figure 1, consists of a rotating disk made of stainless steel and of radius
R = 140 mm, which can be driven in rotation by an electric DC motor. The variation
of the rotational frequency N is obtained by varying the supply voltage of the motor.
This frequency N, measured using an optical encoder (360 impulses/rev), can be
varied continuously up to 2 Hz (2 r.p.s.). It is controlled with an accuracy of 0.01 Hz.
Because of the difficulty of maintaining a stable angular velocity for the weakest rota-
tion frequencies, no measurements were carried out for values of N lower than 0.1 Hz.
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The disk is placed inside a stationary vertical cylindrical housing of circular interior
section of 150 mm in radius and 60 mm in depth. The upper face of the housing is
closed by a removable cover that constitutes the stationary disk. In order to ensure
conditions of closed flow, the gap between the two disks is enclosed by a vertical
cylindrical sidewall attached to the stationary cover. The radial distance jr between
the edge of the disk and the sidewall has been reduced to less than 0.05 mm, so that
the rotation of the disk takes place without friction. The housing, the stationary disk
and the sidewall are made entirely of Plexiglas to allow the flow visualizations and
ultrasonic measurements of the velocity.

The housing is completely filled with water at ambient temperature. The experi-
ments were realized at a constant ambient temperature of 20 ◦C, to within ±1 ◦C, so
that the kinematic viscosity of the working fluid is ν ≈ 1 mm2 s−1. The draining and
filling operations of the housing are carried out through two openings in the cover
and in the bottom plugged during the experiments.

A device with a ball thrust allows the vertical displacement of the rotating disk in
such a way that the axial distance h between the two disks can be adjusted contin-
uously up to 20 mm with an accuracy better than 0.02 mm. Geometric imperfections
including the flatness and roughness defects were measured to induce a variation
of the height h of less than 0.07 mm. The experimental results presented in this
paper were realized for values of h of more than 1 mm in order to limit the relative
inaccuracy in the distance h.

The two experimental parameters are the rotation frequency N (or the angular
velocity of the rotating disk Ω = 2πN), and the axial distance h separating the two
disks. For comparisons with previous studies, in particular with stability analyses, we
have chosen R and Ω−1 as characteristic scales of length and time respectively, so that
the flow control parameters are the Reynolds number Re = ΩR2/ν = Reh(h/R)−2 and
the aspect ratio h/R. Finally, we define a cylindrical coordinate system (r, θ, z) fixed
to the stationary disk (laboratory frame), with origin at the centre of the stationary
disk and with the z-axis pointed towards the rotating disk (figure 1).

Two other geometries, presented in figure 2, have been used to investigate the
influence of the radial boundary conditions. The first one, shown in figure 2(a), is
obtained by removing the vertical sidewall from the cover. In this case, there is a
radial gap jr equal to 10 mm between the rotating disk and the housing. The second
geometrical configuration (figure 2b) is realized by adding to the stationary cover
a vertical shroud which has an inner radius of 130 mm. An axial gap ja of 1 mm
separates the rotating disk from this stationary cylinder. We will see in § 6 the strong
influence of the boundary conditions on the pattern selection.

2.2. Investigation techniques

The hydrodynamic structures which develop in the flow during its transition from lam-
inar to turbulent states are visualized by a classical method using reflective anisotropic
particles in suspension in the flow. This method was quantitatively analysed by Savas
(1985) and more recently by Gauthier, Gondret & Rabaud (1998). The flow is seeded
with flake particles which have a typical length of less than 15µm and a density at
20 ◦C of about 3 g cm−3. They consist of mineral mica platelets coated with metal
oxide (oxide of tin and titanium dioxide) which provides them with a strong index of
reflection of light. Although their movement is rather complex (Gauthier et al. 1998),
our previous experiments (Schouveiler 1998; Schouveiler et al. 1999) have shown, by
comparisons of visualizations and velocity measurements, that under suitable con-
ditions of lighting these particles are good tracers of the hydrodynamic structures.
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Figure 2. The two different disk and boundary configurations: (a) geometry with radial gap
jr = 10 mm, (b) geometry with axial gap ja = 1 mm.

Their slow sedimentation permits the flow pattern to be visualized for several hours.
Note that we have not taken into account the variation of the kinematic viscosity
of the fluid due to the presence of the small amount of these particles. The flow
is illuminated with a 1000 W projector of white light inclined with respect to the
rotation axis (figure 1). This non axisymmetric lighting induces a slight apparent
inhomogeneity in the visualizations.

The flow patterns are visualized through the fixed disk and for all the flow images
presented, the rotating disk turns in the clockwise direction. The light scattered by
the particles is captured, at the video frequency of 25 images per second, by means
of a black and white camera placed on the rotation axis (see figure 1) and fixed
in the laboratory frame (i.e. stationary disk). The images are recorded on standard
videotape and can be digitized, on 512× 512 pixels, with an image processing board
controlled by a microcomputer. Each pixel is coded on a grey scale ranging between
0 (black) to 255 (white). The digitized images can then be processed. In particular,
space–time images are built-up by a sequential accumulation of video lines, taken on
a radius of the disk, at standard video rate (25 Hz). Such images provide information
on the spatio-temporal dynamics of the observed structures.
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Figure 3. Transition diagram of the flow between a rotating and a stationary disk enclosed by a
stationary sidewall. Curves A and B separate the mixed basic flow (BFM) from the basic flows with
separated boundary layers (BFS) and with joined boundary layers (BFJ) respectively. Curves 1 and
2 are the thresholds for the circular rolls (CR) and the spiral rolls (SRI) respectively. Curve 1′ is the
spiral roll (SRII) threshold. Curves 1′′, 2′′ and 3′′ are the thresholds for the spiral rolls (SRIII), the
solitary waves (SW) and the spots (SP) respectively. Curve 4′′ is the threshold for the simultaneous
disappearing of the spiral rolls (SRIII) and of the solitary waves (SW). These thresholds have been
determined by increasing the Reynolds number Re, hysteresis cycles have been demonstrated for
the thresholds 2′′ and 4′′.

Complementary information has been obtained by using an ultrasonic Doppler
velocimeter working with a pulsed ultrasonic emission. For this, the flow was
seeded with nylon spherical micro particles (80µm in diameter, and of density
1.02 g cm−3). By detecting the Doppler frequency shift of ultrasonic pulses reflected
by the particles, this device allows measurement of temporal series of instantaneous
profiles, along the ultrasound beam, of the velocity component in this direction.
This technique has been presented in detail by Takeda (1986). Unlike visualiza-
tions, these measurements provide information about the axial structure of the
flow.

3. Experimental procedure and transition diagram
The principal result of this experimental study is the transition diagram shown in

figure 3. It is obtained by a systematic exploration (following the procedure described
below) of the portion of the control parameter space (h/R, Re) accessible with our
apparatus. This exploration has been done to identify the various flow regimes, which
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are denoted with initials in figure 3. To determine the stability domains of these
regimes, the distance h was fixed and the rotation frequency N increased slowly
(quasi-statically) from 0 to 2 r.p.s. After each variation of N, we waited long enough
for the asymptotic regime of the flow to be reached. This time delay, from ten minutes
to about one hour, was always much larger than the spin-up time of the flow defined
as the quadratic average of inertial and viscous times (Greenspan 1968). Then N
was decreased back in the same manner to check the existence of possible hysteresis
cycles. This procedure was repeated for numerous values of h between 1 and 20 mm.
The reproducibility of the results was verified by conducting several experimental
runs.

Curves 1 to 4′′ in figure 3 were obtained by interpolating the experimental points
which correspond to transition boundaries between flow regimes. These transitions
have been established by visual observations for increasing N. As all the instabilities
are first observed at the periphery of the disk, we will use the Reynolds number
Re = ΩR2/ν which corresponds to the value at r = R of a local Reynolds number
based on r. As discussed in the next sections, hysteretic features have been observed
only for boundaries 2′′ and 4′′. The determination of these bifurcation thresholds from
one state to another depends on the sensitivity of the visualization technique, which
tends to slightly overestimate these values because the structures become observable
only when they have reached a large enough amplitude.

As reported in previous studies (see § 1), some of the flow regimes (denoted CR
and SR in figure 3) result from the development of instabilities that generate regular
roll-like patterns. These roll systems appear on the visualizations as alternate clear
and dark bands forming spirals or circles around the disk axis. Because the angle
ε between the spiral axis and the tangential direction does not present a noticeable
variation along a radius, they can be approximated by logarithmic spirals. According
to the usual convention, the angle ε is counted positive when spirals are rolled up
towards the disk axis in the rotation sense of the rotating disk. The roll-like patterns
are thus characterized by the orientation angle ε and the local (along the radius
r) quantities such as the wavelength λ or the number n of structures present on
the circumference r. These quantities are related by the approximate relation (by
neglecting the curvature of the circumference over one wavelength): λ = (2πr/n) sin ε.
For all the instabilities, the temporal dependence is discussed relative to the reference
frame with respect to the fixed disk, i.e. to the laboratory frame. Frequencies f
(possibly functions of r) are deduced from Fourier transforms either of space–time
images (see § 2.2) or of ultrasonic Doppler measurements of radial velocity profiles
along a radius as presented in Schouveiler et al. (1999).

Itoh (1988) and San’kov & Smirnov (1985) have also presented experimental
transition diagrams for a similar system of enclosed flow between a stationary and
a rotating disk, but the former considered only five values of the aspect ratio h/R
between 0.80 × 10−2 and 12.0 × 10−2, and the latter had a restricted range of this
parameter (i.e. 0.67 × 10−2 6 h/R 6 6.33 × 10−2). In the present work, the variation
of the experimental parameters h between 1 and 20 mm and N from 0 to 2 r.p.s.
corresponds to exploration ranges for the two control parameters h/R and Re of,
respectively [0.71 × 10−2, 14.28 × 10−2] and [0, 246.3 × 103]. We will see that our
observations are in good agreement with these previous investigations.

The transition diagram (figure 3) is represented simultaneously in the (h, Ω) plane
and in the (h/R, Re) plane. It reveals a large variety of flow regimes which are denoted
by initials: BF for basic flow, CR for circular rolls, SR for spiral rolls, SW for solitary
waves and SP for spots. These different patterns are described in the next sections.
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Figure 4. Typical mean velocity profiles vξ(ξ) measured by ultrasonic Doppler velocimetry for
h/R = 5.0 × 10−2: (a) separated boundary layers: r/R = 0.85, Re = 36.9 × 103 (Reh = 92.36) and
(b) joined boundary layers: r/R = 0.357, Re = 18.5× 103 (Reh = 46.18).

4. Basic regimes
At very low Reynolds number Re and for all the explored values of the aspect

ratio h/R, the flow appears stationary and axisymmetric. The region of stability of
this basic flow corresponds to three areas denoted by BF in figure 3. It is limited
at high Re by the curves 1, 1′ and 1′′. It is not our intention here to provide a
complete description of this well-known basic flow (see § 1) but just to recall few
characteristic results. Our measurements confirm previous studies showing that the
basic regime is a Batchelor-type flow which evolves from a purely viscous flow to
a flow with separated boundary layers as Reh is increased. We studied the velocity
field of this basic flow by ultrasonic Doppler anemometry at various radius location
and for various values of the flow parameters. The ultrasound beam passes through
the cover and is confined to an azimuthal plane (at a chosen radius r). It is directed
along a local ξ-axis which makes an angle of α = 20◦ with the vertical axis. This
value of 20◦ is a good compromise to minimize the echoes and reflections of the
ultrasound beam (see details in Schouveiler et al. 1999). Although the mean velocity
profiles vξ(r, ξ) obtained in this way are combinations of the three components of the
velocity, they distinguish the nature of the mean flow between Batchelor-type flow
with separated boundary layers and the torsional Couette flow with merged boundary
layers. Velocity vξ is non-dimensionalized by rΩ sin α and the ξ-coordinate is chosen
to be 0 on the fixed disk and 1 on the rotating one.

For large Reh, the non-dimensional mean velocity profile vξ(ξ) presents the same
characteristics as the azimuthal velocity profile of the Batchelor-type flow (see fig-
ure 4(a), where Reh = 92.36). It is possible to distinguish a boundary layer on the
fixed disk and one on the rotating disk (respectively at ξ < 0.3 and ξ > 0.7). These
two layers are separated by an inviscid rotating core (0.3 < ξ < 0.7) in which the
velocity gradient is weak. As mentioned in previous experimental studies, one can see
that, as Reh is decreased, the flow evolves to a purely viscous flow. As can be seen
in figure 4(b) for Reh = 46.18 the boundary layers which develop on each disk are
joined.

By measuring mean velocity profiles vξ(ξ) at various radii we found also that, over
a certain range of the experimental parameters, the basic flows have boundary layers
joined up to a certain radius and separated beyond. In agreement with numerical
simulations of Randriamampianina et al. (1997), we observe that this non-viscous
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Figure 5. Evolution of mean velocity profile vξ(ξ) with the radius r in the case of mixed basic
flow (BFM) for h/R = 5.0× 10−2, Re = 36.9× 103 (Reh = 92.36). (a) r/R = 0.357, (b) r/R = 0.643,
(c) r/R = 0.850.

part of the flow starts to be formed close to the periphery before extending towards
the centre, when increasing the Reynolds number. As presented in figure 5, for some
experimental configurations, the velocity profiles vξ(ξ) measured at various radii reveal
that the thickness of the boundary layers on both disks varies so that the rotating
core occupies an increasing proportion of axial space as r is increased, as observed by
Gauthier et al. (1999). This result is also in agreement with previous studies (Dijkstra
& van Heijst 1983) which show that this radial evolution results from the increase
of the angular velocity Ωc = βΩ of the rotating core with r. We have mentioned
that the nature of the velocity vξ(ξ) makes any quantitative analysis difficult, but,
since the radial and axial velocities of the Batchelor flow are small in the rotating
core, we can obtain an estimated angular velocity of the central part by using the
velocity measurements vξ(ξ) at mid-height: vξ(ξ = 0.5) ≈ Ωc/Ω = β. In this way, for
the situation presented in figure 5 (Re = 36.9 × 103, h/R = 5.0 × 10−2) this angular
velocity evolves from Ωc = 0.35Ω at r/R = 0.357, to Ωc = 0.40Ω at r/R = 0.643
and to Ωc = 0.46Ω at r/R = 0.850. These results overestimate the angular velocity of
the rotating core since the axial velocity of the flow is not strictly zero in this area.
Nevertheless, they are of same order as those of previous studies (Dijkstra & van
Heijst 1983) where β has been found to be an increasing function of the radius.

In summary, when the Reynolds number Reh increases, the viscous effects are
increasingly confined to the vicinity of the two disks but this confinement is non-
homogeneous along the radius. Therefore, we distinguish three types of basic flows
whose regions of stability correspond to the three areas denoted BFJ, BFM and BFS

respectively in figure 3. For the smallest values of Reh, the basic flow appears to be
purely viscous, i.e. the boundary layers which develop on each disk are joined over
all the radial extent (the corresponding area is labelled BFJ). Then, at higher Reh,
a rotating core is formed close to the periphery. The flow is then in a mixed state
(corresponding area denoted BFM). The boundary layers are joined up to a certain
radius and are separated beyond. When Reh is increased still further, the rotating
core extends towards the centre until it occupies the entire radial extent apart from
close to the shroud at the periphery. The basic flow possesses two separated boundary
layers (area called BFS). The boundaries between these areas (dotted curves A and
B in figure 3) are determined by measuring the velocity profiles vξ on a radius
between 0.15 6 r/R 6 0.85 and for various values of the parameters (h/R, Re). In
fact, a good approximation of curve A is simply given by Reh = 100 and curve B
by Reh = 25. Thus, when Reh > 100 (area denoted BFS above curve A) the flow is
always of Batchelor type with separated boundary layers over all the radial extent
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(0.15 6 r/R 6 0.85). These layers, whose thickness decreases with r, are separated by
an inner core which rotates with a non-constant angular velocity Ωc. In contrast, for
Reh < 25 (area called BFJ below curve B), the flow is always purely viscous, with
joined boundary layers.

5. Secondary and subsequent regimes
When the Reynolds number Re is increased, we have observed different bifurcations

of the flow starting from a critical threshold that depends strongly on h/R and thus
on the type of basic flow. Our exploration reveals three distinct regions for which
the primary bifurcation leads to the formation of three types of different patterns
denoted (CR), (SRII) and (SRIII) on the transition diagram of figure 3. The limits
of stability of the basic flow with respect to these new states are represented by the
curves 1, 1′ and 1′′. Secondary and subsequent flow regimes can then occur. Their
domains of appearance are limited by curves noted 2, 2′′, 3′′ and 4′′. The resulting
flows are presented in the following sections according to the aspect ratio h/R.

5.1. Large aspect ratio instabilities

We present here the sequence of bifurcations observed for the highest values of
the aspect ratio: 7.14 × 10−2 6 h/R 6 14.29 × 10−2 (10 mm 6 h 6 20 mm). In this
range, the basic flow loses its stability from a threshold Re1, a function of h/R and
represented by curve 1 on the transition diagram of figure 3. Along this boundary,
the Reynolds number Reh is always higher than 100, meaning that the transition
affects a Batchelor-type flow with separated boundary layers (BFS). Note that the
experimental threshold is higher than that predicted by Fernandez-Feria (2000) in the
linear spatial analysis of the Bödewadt boundary layer. The loss of stability of this
basic mode leads to the formation of circular rolls (CR) (ε = 0◦), similar to the waves
observed by Savas (1983) in his transient experiments, centred on the axis of the disks
and which appear at the periphery of the system and travel towards the centre. Their
radial negative phase velocity evolves from 7 mm s−1 at r/R = 0.9 to 5 mm s−1 at
r/R = 0.4 for example for Re = 17.2× 103 and h/R = 11.43× 10−2. A visualization
of these waves is presented in figure 6(a). As described by Schouveiler et al. (1999),
the frequency associated with this instability is strongly correlated with the rotational
frequency N of the rotating disk and varies radially. Following two successive roll
pairings, it evolves from 3N at the periphery to N when the circular waves approach
the centre. These frequencies are compatible with the values calculated by Fernandez-
Feria (2000) which are close to the lower boundary of the unstable region as calculted
in this analysis. The pairings or merging of these circular rolls can be seen on the
space–time diagram constructed as described in § 2.2 and presented in figure 6(b).
They are also reported in the numerical simulations of Cousin-Rittemard (1996)
but not in the experiment by Gauthier et al. (1999). This process is not yet totally
understood. The wavelength of these corotating circular rolls can be measured on
the visualizations. We obtained a value around 15 mm which gives a dimensionless
wavenumber, using the length scale (ν/Ω)1/2, of 0.42 in complete agreement with the
observations of Savas (1983) and with the calculation of Fernandez-Feria (2000). The
double-hump structure of the eigenmode calculated by this analysis is similar to the
profile we measured by ultrasound anemometry (Schouveiler et al. 1999). A precise
description of this instability was also recently obtained (Gauthier et al. 1999), where
it is shown that this circular wave instability is of convective type, leading to a high
sensitivity to external controlled or uncontrolled forcing.
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Figure 6. (a) Visualization of the circular rolls (CR) for h/R = 11.43 × 10−2, Re = 17.2 × 103.
(b) Corresponding space–time diagram showing the propagation of the circular rolls and their
periodic pairings (dotted circles). Time is expressed in units of disk rotation period.

When increasing the Reynolds number, a second bifurcation is observed at a
second threshold (curve 2 on figure 3). This bifurcation leads to the development of
a system of spiral rolls (SRI) which appears in the peripheral region of the flow. The
axisymmetry of the flow is thus broken by this second bifurcation. These spirals are
defined by an angle ε of about 25◦ and coexist with the axisymmetric waves described
previously. The visualization of figure 7 shows the coexistence of the spiral rolls (SRI)
in the periphery of the system and the circular rolls (CR) in the central area. The
spiral rolls are corotating and non-stationary both in the reference frame of the fixed
disk and in the rotating disk frame. These waves, which result from a Hopf bifurcation
(Schouveiler et al. 1998), progress outwards, i.e. with a positive radial phase velocity.
A previous study was devoted to the Eckhaus secondary instability which selects the
number of spiral arms (Schouveiler et al. 1998). At threshold, the number of rolls
is 18, but depending on the initial conditions of the flow, states with 16 to 24 arms
can be obtained. Unlike the circular waves, their frequency is not locked to the disk
rotation frequency N and varies from 1.7 to 4 times N.

By the use of ultrasound anemometry, we have also already shown (Schouveiler
et al. 1999) that both wave systems appear in the boundary layer of the stationary
disk. These observations agree with stability analyses of San’kov & Smirnov (1992)
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Figure 7. Visualization of the flow for h/R = 11.43× 10−2, Re = 20.9× 103 showing the
coexistence of the circular (CR) and spiral (SRI) rolls.

and Itoh (1991), which predict that the Bödewadt layer is the most unstable region of
the flow. When the Reynolds number is further increased, the flow resulting from the
coexistence of these modes of axisymmetric and spiral instability becomes increasingly
complex without any apparent development of a new instability, as shown in the series
of three space–time diagrams of figure 8. We can easily distinguish on these views the
opposite propagation of the circular and of the spiral waves. As can be seen, ‘wave
turbulence’ appears by interaction between the two kinds of waves (see figure 9)
and has a characteristic granular appearance with a typical length given by the
distance h.

5.2. Small aspect ratio instabilities

When 0.71 × 10−2 6 h/R 6 1.79 × 10−2 (1 mm 6 h 6 2.5 mm), the process of
transition is very different from that previously presented. In this case, the primary
bifurcation occurs for values of Reh lower than 25 and is thus associated with the
destabilization of the purely viscous basic flow, i.e. with joined boundary layers (basic
flow denoted BFJ). Daily & Nece (1960), for h/R = 1.27×10−2, and Sirivat (1991), for
h/R = 1.4×10−2, also describe a primary bifurcation occurring for these small aspect
ratio flows. Beyond a threshold represented by curve 1′′ on figure 3, this instability
generates a network of spiral vorticies (SRIII) whose visualization is presented in
figure 10(a). These spirals, also observed by Chauve & Tavera (1984), San’kov &
Smirnov (1985), Itoh (1988) and Sirivat (1991), are defined by a small angle ε between
−3◦ and −5◦. Their wavelength is of the order of the thickness h of the fluid layer
and they propagate with a small radial phase velocity which can be positive or
negative.

Above a second threshold Re′′2, which is also a function of h/R (curve 2′′ in figure 3),
we observe the formation of turbulent stuctures having a spiral shape (SW). These
spirals are more tilted (the angle ε is about −20◦) and are superimposed on the
SRIII network as shown on figure 10(b). These structures present neither spatial nor
temporal periodicity. Each has its own dynamics and they rotate in the same direction
as the disk but with a different angular velocity. For these reasons, San’kov & Smirnov
(1985) use the terminology ‘solitary waves’ that we will retain here. A third type of
structure, called spots (SP) because of their localized appearance (of the order of
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Figure 8. Space–time diagrams showing the transition to ‘wave turbulence’ for h/R = 8.57× 10−2.
(a) Re = 33.3× 103, (b) Re = 36.9× 103, (c) Re = 46.6× 103. Time is expressed in units of disk
rotation period.

2 mm), appears above a third critical value Re′′3 (curve 3′′ in figure 3). These spots
are formed at the periphery of the container and move towards the centre on spiral
trajectories while passing through the SRIII rolls and solitary waves. Some of these
spots can be seen on figure 11(a). Finally, when Re exceeds a value Re′′4 (curve 4′′) both
the spiral structures and the solitary waves disappear. The spots penetrate further
towards the centre and their number increases. The flow is then turbulent except
in the central region as shown in figure 11(b). Figure 12 is a schematic bifurcation
diagram which presents the succession of instabilities observed during the transition
of torsional Couette flow (BFJ) to turbulence. Hysteresis cycles have been clearly
demonstrated for the transition to the SW and SP regimes, as is classically the case
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Figure 9. Visualization of the ‘wave turbulence’ regime for h/R = 11.43× 10−2, Re = 61.6× 103.

(a)

(b)

Figure 10. Visualizations of the flow for h/R = 1.43× 10−2. (a) Re = 89.9× 103: spiral roll system
(SRIII), (b) Re = 126.8× 103: coexistence of spiral rolls (SRIII) and solitary waves (SW).
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(a)

(b)

Figure 11. Visualization of the flow for h/R = 1.96× 10−2. (a) Re = 168.7× 103: spots (SP),
(b) Re = 190.0× 103: turbulence.

for the transition of plane Couette flow (Daviaud, Hegseth & Bergé 1992). Indeed
the torsional Couette flow has a linear azimuthal velocity profile whose stability can
be compared with that of plane Couette flow. For instance, the critical Reynolds
number associated with the transition to the turbulent solitary waves (SW) and based
on half the thickness h of the fluid layer, has a value around 340 which is close to the
threshold given for the appearance of turbulent spots in plane Couette flow (Dauchot
& Daviaud 1995).

5.3. Intermediate aspect ratio instabilities

For intermediate values of the aspect ratio h/R, i.e. between 1.79×10−2 and 7.14×10−2

(2.5 mm 6 h 6 10 mm), only one mode of instability, which was not observed for the
aspect ratio ranges previously presented, appears. This mode develops starting from
a threshold Re′1 corresponding to curve 1′ and consists again of a network of spiral
structures (denoted SRII, see figure 13) whose axes have a positive angle ε with the
azimuthal direction; ε has been measured to be between 12◦ and 15◦ and the typical
wavelength of this spiral pattern is given by the fluid layer thickness h. These spirals
are stationary in the reference frame of the laboratory. This stationary network was
observed in previous experimental studies (e.g. Wimmer 1978; Itoh 1988; Rabaud
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Figure 12. Schematic of the sequence of bifurcations for small aspect ratios.

Figure 13. Visualization showing the existence of the stationary spiral rolls (SRII) for
h/R = 4.29× 10−2, Re = 50.5× 103.

1994), and the angle ε that we measure is consistent with these observations. Wimmer
was the first to present a visualization of this system and to describe it as consisting
of corotating rolls; San’ kov & Smirnov (1984) note that it results from a supercritical
bifurcation.

For these intermediate values of h/R, it is even possible to observe the superposition
of three types of structures. When the critical value Re1 is between the thresholds of
formation of the circular roll network (denoted CR, curve 1) and of the SRI system
(curve 2), the three systems of rolls (CR, SRI and SRII) coexist. Their dynamics
can be oberved on the space–time image of figure 14. For r/R > 0.7, the inclined
traces correspond to SRI rolls propagating radially outwards. In the area defined by
0.5 < r/R < 0.75, one can distinguish the traces parallel with the time axis of the
stationary rolls (SRII). Finally, the inclined traces observed for r/R < 0.55 are due to
the propagation of the circular rolls (CR).

The complexity of the flow is also illustrated by the presence of two points (P1

and P2 in figure 3) of codimension greater than 1. These are intersections of stability
curves of different modes. This was also recognized by Hoffmann, Busse & Chen
(1998) and is often associated with a chaotic competition between patterns but we
have not observed this. In P1 the spiral rolls SRI, SRII and SRIII are destabilized
together and in P2, the circular rolls CR can appear simultaneously with the SRII
spiral rolls.
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Figure 14. Space–time image (h/R = 5.0 × 10−2, Re = 46.8 × 103) showing the coexistence of the
outward travelling spiral rolls (SRI), stationary spiral rolls (SRII) and inward travelling cicular rolls
(CR). Time is expressed in units of disk rotation period.

6. Influence of the geometry
Comparison between the transition processes described in § 5 and those reported

in previous experimental work shows globally a good agreement. However we noted
two differences. The first one concerns the fact that Wimmer (1978) and Itoh (1988)
mention the existence of network SRII for values of the aspect ratio higher than
those where we observe it (i.e. higher than 6.43 × 10−2). The second difference is
an instability which we did not observe in our system, but which was visualized by
Sirivat (1991) for aspect ratios h/R = 2.25× 10−2 and 4.75× 10−2, and consists of a
system of stationary and quasi-circular rolls (ε ≈ 0◦). We think that the differences in
the boundary conditions are the origin of this discrepancy. Indeed, the devices used
by Wimmer and Itoh have a radial gap jr , see figure 2(a), of about 0.5% of the radius
R of the disk for the former and 0.8% for the latter, whereas in our case jr is lower
than 0.04% of R. The device used by Sirivat has an axial gap ja as presented in
figure 2(b). This gap accounts for 17.5% of the total distance h for h/R = 2.25× 10−2

and 8.3% for h/R = 4.75 × 10−2. The stationary mode reported by Sirivat (1991) is
observed with a stationary or a rotating cylindrical shroud.

As we saw in § 2.1, we can choose two other types of boundary conditions presented
in figure 2. For the configuration with the radial gap jr/R = 7.14 × 10−2 presented
in figure 2(a) the sequence of transitions observed for h/R > 1.96 × 10−2 is very
different from that described for the closed system, where the circular roll pattern was
the first to be destabilized. However, Gauthier et al. (1998) observed the presence of
circular rolls (CR) even with a rotating shroud. In our new geometry, we distinguished
the development of only one instability, consisting of spiral rolls with ε < 0◦ whose
visualization is presented in figure 15. These structures are non-stationary, propagating
with a radial component, and their phase velocity is positive.

On the other hand, in the case of a radial gap, the transition process observed for
the smallest values of aspect ratio h/R 6 1.96 × 10−2 is identical to that presented
§ 5.2 for the closed configuration.

The experiments with the configuration of figure 2(b) were carried out at h/R =
14.29 × 10−2, the axial gap being in this case 5% of the height. In this geometry,
visualizations of the flow reveal a primary transition leading to a stationary system
of spiral rolls defined by a positive angle ε (see figure 16). It is in the same type
of geometry that Sirivat (1991) observed a stationary instability consisting of quasi-
circular rolls.
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Figure 15. Geometry with radial gap: visualization of non-stationary rolls with ε < 0◦
(h/R = 11.43× 10−2, Re = 11.1× 103).

Figure 16. Geometry with axial gap: visualization of the stationary rolls with ε > 0◦
(h/R = 14.29× 10−2, Re = 19.7× 103).

The differences in the transition processes observed for these geometries with radial
and axial gaps compared to those obtained for a closed configuration show the strong
influence of the boundary conditions. But this influence seems to decrease when
the aspect ratio decreases. Indeed, for small aspect ratios, we observed an identical
sequence of transition for the closed configuration and for other configurations with
a radial gap.

7. Concluding discussion

This systematic study enables us to construct the transition diagram (presented
in figure 2) of the flow between a fixed and a rotating disk confined in a closed
geometry, for a large range of the flow parameters h/R and Re. We have shown
that this system presents various sequences of instabilities during its transition to
turbulence according to the value of the aspect ratio. In the range explored, we
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found three primary instabilities that affect the basic flow. When h/R is sufficiently
small, the transition concerns a flow close to a pure shear with joined boundary
layers (the torsional Couette flow). The primary bifurcation leads to the development
of a network of spiral rolls (SRIII). Secondary instabilities lead at higher Reynolds
numbers to the appearance of localized turbulent structures, which can be spots
(SP) or solitary waves (SW). Turbulence occurs through the progressive invasion of
these structures into the laminar flow. In contrast, for intermediate and large aspect
ratios, the primary bifurcations result from the destabilization of flows where the
viscous effects are confined to boundary layers in the vicinity of the disks. Spiral rolls
(SRI and SRII) and circular rolls (CR) have been visualized and the transition to
turbulence occurs by the interaction of these waves. Most of our observations are in
agreement with previous experimental or numerical works.

Finally, let us mention the numerical work of Hoffmann et al. (1998) on the stability
of the Ekman–Couette flow, which consists of a Couette flow with a superimposed
rotation around an axis normal to the plates. When the rotation rate is increased,
this evolves from a purely viscous flow to a separated boundary layer flow, as is the
case for the rotating/stationary disk flow. As in the stability analysis of the Batchelor
solution of the flow between a rotating and a stationary disk presented by San’kov
& Smirnov (1992), Hoffmann et al. (1998) recovered the type 1 and 2 boundary layer
instabilities (see § 1). Moreover, for purely viscous flow these two studies reveal the
existence of a primary instability consisting of stationary (Hoffmann et al. 1998) or
nearly stationary (San’kov & Smirnov 1992) rolls. These analyses can be compared to
our own experimental results. This comparison was in fact already made in Hoffmann
et al. (1998), where the similarity between the experimental and analytical transition
diagrams is striking. More specifically, in the case of separated boundary layers, type 1
and type 2 instabilities as calculated by Hoffmann et al. (1998) would then correspond
to modes III and IV (inward propagating waves) of San’kov & Smirnov (1992), and
to SRI and CR structures of our own experimental study. Indeed both of these modes
are localized in the Bödewadt layer and are characterized by ε ≈ 0◦ for CR and by
ε > 0◦ for RSI. For the merged boundary layer flow, the SRIII mode we observed
would correspond to the stationary mode also obtained by the two analytical works. A
more recent study by Hoffmann & Busse (2000) addresses the appearance of isolated
solitary vortices in the Ekman–Couette flow. Such finite-amplitude vortex solutions
have also been computed by Cherhabili & Ehrenstein (1995) for plane Couette flow.
Although the inner structure of these isolated vortices is difficult to compare to the
turbulent visual appearance of our solitary waves, it is noteworthy that the solutions
of Hoffmann & Busse (2000) are obtained in a domain of the flow parameters which
is comparable to ours. However it appears that this domain extends also to separated
boundary layer flows which is not the case in our experiments where the solitary
waves exist only as a tertiary regime of small aspect ratio flows.

Therefore, this experimental study presents for the first time the detailed tran-
sition diagram of the flow confined between a rotating and a stationary disk. It
exhibits the great variety of instabilities and patterns associated with these rotat-
ing flows. In particular we identified two main routes of transition to turbulence: a
sequence of supercritical bifurcations leads to wave turbulence for large separating
gaps, unlike small aspect ratio values for which we observed the formation of local-
ized turbulent structures characteristic of subcritical transitions and spatio-temporal
intermittency.

We wish to thank L. Tuckerman for helpful comments.
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